Toric Surface Codes and Minkowski Sums

نویسندگان

  • John Little
  • Hal Schenck
چکیده

Toric codes are evaluation codes obtained from an integral convex polytope P ⊂ R and finite field Fq. They are, in a sense, a natural extension of Reed-Solomon codes, and have been studied recently in [6], [8], [9], and [12]. In this paper, we obtain upper and lower bounds on the minimum distance of a toric code constructed from a polygon P ⊂ R by examining Minkowski sum decompositions of subpolygons of P . Our results give a simple and unifying explanation of bounds in [9] and empirical results in [12]; they also apply to previously unknown cases.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Minkowski Sum of Polytopes and Its Normality

In this paper, we consider the normality or the integer decomposition property (IDP, for short) for Minkowski sums of integral convex polytopes. We discuss some properties on the toric rings associated with Minkowski sums of integral convex polytopes. We also study Minkowski sums of edge polytopes and give a sufficient condition for Minkowski sums of edge polytopes to have IDP.

متن کامل

Toric Surface Codes and Minkowski Length of Polygons

In this paper we prove new lower bounds for the minimum distance of a toric surface code CP defined by a convex lattice polygon P ⊂ R 2 . The bounds involve a geometric invariant L(P ) , called the full Minkowski length of P which can be easily computed for any given P .

متن کامل

Lattice polytopes cut out by root systems and the Koszul property

We show that lattice polytopes cut out by root systems of classical type are normal and Koszul, generalizing a well-known result of Bruns, Gubeladze, and Trung in type A. We prove similar results for Cayley sums of collections of polytopes whose Minkowski sums are cut out by root systems. The proofs are based on a combinatorial characterization of diagonally split toric varieties.

متن کامل

Relative Stanley–reisner Theory and Lower Bound Theorems for Minkowski Sums

This note complements an earlier paper of the author by providing a lower bound theorem for Minkowski sums of polytopes. In [AS16], we showed an analogue of McMullen’s Upper Bound theorem for Minkowski sums of polytopes, estimating the maximal complexity of such a sum of polytopes. A common question in reaction to that research was the question for an analogue for the Barnette’s Lower Bound The...

متن کامل

Deformations of Smooth Toric Surfaces

For a complete, smooth toric variety Y , we describe the graded vector space T 1 Y . Furthermore, we show that smooth toric surfaces are unobstructed and that a smooth toric surface is rigid if and only if it is Fano. For a given toric surface we then construct homogeneous deformations by means of Minkowski decompositions of polyhedral subdivisions, compute their images under the Kodaira-Spence...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Discrete Math.

دوره 20  شماره 

صفحات  -

تاریخ انتشار 2006